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Relying on our earlier results in the unitary group Racah--Wigner algebra, specifically 
designed to facilitate quantum chemical calculations of molecular electronic structure, the ten- 
sor operator formalism required for an efficient evaluation of one- and two-body matrix ele- 
ments of molecular electronic Hamiltonians within the spin-adapted Gel'fand-Tsetlin basis is 
developed. Introducing the second quantization-like creation and annihilation vector opera- 
tors at the unitary group [U(n)] level, appropriate two-box symmetric and antisymmetric irre- 
ducible tensor operators as well as adjoint tensors are defined and their matrix elements 
evaluated in the electronic Gel'fand-Tsetlin basis as single products of segment values. Using 
these tensor operators, the matrix elements of one- and two-body components of a general elec- 
tronic Hamiltonian are found. Explicit expressions for all relevant quantities pertaining to at 
most two-column irreducible representations that are required in molecular electronic struc- 
ture calculations are given. Relationships with other approaches and possible future extensions 
of the formalism to partitioned bases or spin-dependent Hamiltonians are discussed. 

1. I n t r o d u c t i o n  

I n  the  f i rs t  c o m m u n i c a t i o n  o f  this series [1] #1 , r e f e r r ed  to  in the  fo l lowing  as 

P a r t  I ,  we h a v e  f o r m u l a t e d  the  bas ic  p r inc ip les  o f  u n i t a r y  g r o u p  R a c a h - W i g n e r  cal -  

culus  in a f o r m  t h a t  is p a r t i c u l a r l y  su i t ab le  for  a p p l i c a t i o n s  o f  the  u n i t a r y  g r o u p  

a p p r o a c h  ( U G A )  [2-5] to  m a n y - e l e c t r o n  sys t ems  ( fo r  rev iew see refs.  [6-14]) .  I n  

i On leave from: Department of Chemistry, Xiamen University, Xiamen, Fujian, PR China. 
2 Also at: Department of Chemistry and Guelph-Waterloo Center for Graduate Work in Chemis- 

try, Waterloo Campus, University of Waterloo, Waterloo, Ontario, Canada N2L 3 G 1. 
#1 In the following, this paper is referred to as Part I. We wish to point out a couple of misprints that 

crept into table 2 of Part I. For the It (Is) factors (the last column for single occupancy), the factor 
(b + e + t + 2) appearing in the numerator of the type C isoscalar factor should read (b - e + t + 2) 
and, further, the factor (e + 1)in the denominator for the type D should equal (e + 2). 
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this case, when only one- and two-column irreducible representations (irreps) 
come into play, multiplicity problems may be avoided, so that a relatively simple 
and versatile formalism results affording an efficient spin-adaptation of various 
quantum chemical methods that are used in investigations of molecular electronic 
structure (see, for example, refs. [15-29]). 

In contrast to general approaches to U(n) Racah-Wigner calculus [30-33], 
whose objective is an exhaustive treatment of the problem that invariably leads to a 
rather formidable formalism, the present approach is entirely based on the well- 
known duality between unitary group U(n) and symmetric group SN representa- 
tion theory and affords a relatively simple machinery enabling the development of 
efficient algorithms for electronic structure calculations. Indeed, the main objec- 
tive of this series of papers is to provide yet another viewpoint on the existing UGA 
methodologies and to maximally exploit the interrelationship between the 
U(n), SN (see, e.g., refs. [34-36]) and SU(2) (see refs. [36-38]) approaches, obtain- 
ing a sufficiently general yet simple formalism that combines the convenient fea- 
tures of all the above listed approaches while enabling an extension to partitioned 
bases [1,39,40] or spin-dependent Hamiltonians [41]. 

In Part I of this series we have thus introduced the vector coupling of Clebsch- 
Gordan (CG) coefficients for both the U(n) and SN groups and the related isoscalar 
factors or reduced Wigner coefficients. We employed the U(n)-SN reciprocity of 
tensor product representations to interrelate the U(n) and SN isoscalar factors. In 
addition to standard (GT for U(n) and genealogical for SN) bases we also consid- 
ered non-standard or partitioned bases that are essential for an eventual partition- 
ing of larger molecular systems into their basic constituents. The derivation of 
explicit expressions for the isoscalar factors for the relevant two-column irreps was 
then based on the SN representation theory, since in this way we were able to 
achieve an orbital number (n) independent formalism that enables an open-ended 
implementation for arbitrary basis sets defining the electronic model Hamiltonians 
exploited in quantum chemical computations. We have further examined U(n) 
Racah coefficients and derived explicit expressions for those that are pertinent to 
the UGA formalism. 

In this part of our series we shall concentrate on the development of the U(n) irre- 
ducible tensor operator formalism and will exploit it to evaluate one- and two- 
body matrix elements within the standard UGA spin-adapted GT bases. We thus 
first summarize the necessary basic facts about the U(n) irreducible tensor opera- 
tors in section 2 and introduce a convenient scaling of CG coefficients, isoscalar 
factors and reduced matrix elements that will enable us to considerably simplify the 
resulting formalism. We then introduce creation and annihilation-type vector 
operators at the U(n) level that will allow us to cast the entire formalism into a sim- 
pler form, thus facilitating a straightforward derivation of expressions for various 
matrix elements (MEs) that are required in practical implementations of UGA. 
These operators are reminiscent of those employed in both the second quantization 
formalism (at the U(2n) spin-orbital level of the theory) and U(n) boson calculus 
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[30-33], but are unique and specific in that their definition is motivated by the SN 
representation theory and due to the fact that they avoid the necessity to consider 
more than two-column irreps at any level of the theory (cf., e.g., very elegant and 
powerful Green-Gould [42-44] formalism based on invariant polynomial identi- 
ties and related projection operators). The usefulness of these creation and annihi- 
lation-type vector operators is then demonstrated in section 4 where the standard 
segment level formulas are derived for U(n) generator MEs. At the same time, this 
derivation provides a new viewpoint on the group theoretical structure of various 
segment values. 

In order to handle two-body operators in the same fashion, we explore in sec- 
tions 5 and 6 two-body symmetric and antisymmetric tensors as well as adj oint ten- 
sors and develop the required formalism and explicit expressions for these 
quantities, which are then exploited in section 7 for the evaluation of two-body 
MEs. Although all the developments presented in this study may be generalized to 
arbitrary U(n) irreps, and many of the presented results are completely general in 
this regard, our emphasis is on UGA applications to molecular electronic structure 
and all final explicit expressions given in our tables are pertinent to this specific pur- 
pose. The last section 8 then summarizes the results and points out their specificity 
as well as the relationship with related approaches. 

2. U(n) irreducible tensor operators 

A general U(n) tensor operator T (see, e.g., refs. [30-33]), whose components 
transform according to some representation of U(n) under the action of U(n) opera- 
tors, may be partitioned into the irreducible tensor operators by forming appropri- 
ate linear combinations. An irreducible U(n) tensor operator Tu, associated with 
the /zth irreducible representation (irrep) of U(n), is then a set of operators 
T u = {T~(m)} that may be labelled by the Gel'fand tableaux m labelling the basis 
vectors 1~ ~ ) of the carrier space of this irrep #2 (/z) - Iz. For our purposes it is con- 
venient to replace the Gel'fand tableau labelling with the corresponding Weyl 
tableau labels, I~) - [~v), and later, when we consider electronic Gel'fand-Tsetlin 
(GT) states, by the ABC or Paldus [2-4,11] tableaux. Even though either tableau 
automatically implies the relevant irrep label #, it is convenient to display this label 
explicitly in designating our states or tensor operator components. Thus, the  irredu- 

cible tensor operator  associated with the irrep # is defined as a set of operators 
T u -- { T u ( W ) }  , with W ranging over all Weyl tableaux corresponding to this 
irrep, that transform under the action of U(n) generators E 0 in the following way 

W T u ( V ) '  (1) 

#2For the sake of simplicity, the highest weights (tz) labelling U(n) irreps are written without the an- 
gular brackets unless the confusion could arise. 
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with the sum extending over all Weyl tableaux V of the same irrep/z. 
When we consider a general representation space ~ for U(n) or, equivalently, a 

U(n)-module ~, we can reduce it to its irreducible components 22~, ag = @#%~. An 
arbitrary operator 0 acting in ~ then maps an arbitrary 27~ into 7, so that 

(2) 
u = _  w w 

4 

This is also true of a general tensor operator. However, for an irreducible tensor 
operator T~, the image space is restricted to only those irreps that are contained in 
the inner direct product of£ and #, so that 

r . :  @ (3) 
ve#®A 

Thus, for 0 = T,,  the sum over v in eq. (2) is restricted to only those irreps that 
are contained in the inner direct product of # and t ,  as given by the Littlewood- 
Richardson rules. 

We can further decompose the irreducible tensor operator T ,  into compo- 
nents, referred to as unit tensor (or Wigner) operators, that transform a given car- 
rier space Va into another carrier space V.~ (see, e.g., eqs. (3.26) and (3.38) of ref. 
[31]). As was shown by Baird and Biedenharn [30], these unit tensor operators may 
then be labelled by a pair of Gel'fand tableaux belonging to the same irrep. In 
terms of Weyl tableaux we thus designate these operators as T~ (r) ,  F and V being 
Weyl tableaux associated with the irrep #. The upper tableaux F determines a 
unique shift of the irrep labels, designated by A(F), so that 

T ~ ( F )  : V~ --~7~+a(r). (4) 

Thus, eq. (2) for 0 = T# (r) can now be written as 

+ a(r) + A(r) 
w / (5) 

where the sum extends only over the Weyl tableaux of the irrep 7 = A + A(F). The 
shift A(F) is given by the weight of F (see, e.g., eqs. (3.24) and (3.25) of ref. [31]) 
and may also be characterized in terms of box addition and removal to the Young 
pattern associated with a given irrep. The latter description is more convenient 
when we label the basis vector (or states) and tensor operator components by Weyl 
tableaux, and is particularly efficient when only a few shift components are differ- 
ent from zero, as will be the case in our applications. 

We must also mention that, generally, a given irrep v may appear more than 
once in the direct product # ® £, eq. (3). In such cases there exist several Gel'fand 
(or Weyl) tableaux having the same weight, so that A(F) = A(F') while F # F', and 
we need an additional label, say c~, to distinguish the resulting irreps v. Clearly, 
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the operator tableaux F or W themselves may serve as such a multiplicity index. 
One of the key problems of U(n) tensor calculus is the evaluation of matrix ele- 

ments (MEs) of tensor operators. Relying on the Wigner-Eckart (WE) theorem, 
we can write MEs appearing in eq. (5) as a sum of products of reduced matrix ele- 
ments (RMEs) and U(n) Clebsch-Gordan (CG) or Wigner coefficients, 

u Zu( A = <vllz~l w u v (6) 
w u ~ 

where a is the multiplicity index. In the multiplicity free case, we thus have a stan- 
dard SU(2)-type WE theorem 

w f =(vllZ llA) W U V " 

When the basis of a chosen carrier space for a given U(n) irrep is adapted to an 
appropriate group chain, the corresponding CG coefficients can be factored into 
simple products of isoscalar factors (see Part I). Thus, employing the canonical GT 
basis, the U(n) CG coefficients may be expressed as a product of 
U(m) ~ U(m - 1) isoscalar factors with m ranging from 2 to n. This factorization 
may be regarded as the origin of ME segmentation in the unitary group approach 
[4,11,28,36-38]. However, when a multiplicity is present, either at the group or the 
subgroup level, the sum over the multiplicity label(s) must be carried out so that 
segmentation of MEs may involve more than one product. Nonetheless, we shall 
see that when dealing with many-electron systems, the multiplicity can be avoided, 
so that factorization may be achieved for MEs of any tensor operator, including 
spin-dependent ones. These results will be further exploited elsewhere. 

In the following developments we shall find it convenient to employ properly 
scaled CG coefficients and isoscalar factors. We thus rewrite eq. (7) in terms of 
scaled quantities, 

u =(vllZ ll >(')v (8) 
W U V ' 

as indicated by the superscript (s). For an arbitrary scaling factor c(A, #; v) we 
thus define 

<vllZ.ll > (+> = (9a) 

With proper choice of phases, all quantities involved are real and the scaling factor 
c(A, Fz; u) is determined by the metric of scaled CG coefficients, namely 
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 )'s'12 = [c(A,/z; v)] 2 . (10) 

The scaling of CG coefficients then implies a similar scaling for isoscalar factors. 
Recalling the definition of U(n) isoscalar factors, eq. (I.56)#3, we can define the 
scaled isoscalar factors by 

( ; )  1./ A' #' = c ( A ' # ; v ) ' c ( A " # t ; v ' ) - I  A /z (11) 
A / ff " 

With this choice, the relationship between CG coefficients and isoscalar factors is 
preserved, so that the scaled CG coefficients are given by the product of scaled iso- 
scalar factors. An appropriate choice of scaling factors then greatly simplifies the 
explicit form of scaled isoscalar factors, making the ME evaluation more efficient. 
In fact, choosing the RMEs as scaling factors, 

c(A, ~; v) = (vii GILA), (12) 

the scaled RMEs equal to unity, 

<vlIT.IIA)( )-- 1, (13) 

so that the tensor operator MEs, eq. (8), are given by the properly scaled CG coeffi- 
cients, 

W U = W U " (14) 

This choice of scaling will be found very useful in the following sections. 

3. Crea t ion  and  annihi la t ion vector operators 

In order to facilitate the handling of various types of tensor operators, it is useful 
to introduce a suitable set of fundamental tensors in terms of which we can express 
all Other tensors. Clearly, the components of such fundamental tensors, serving as 
our building blocks, should transform as a basis of the simplest nontrivial irrep 
(1 0 ) -  (0, 1), characterized by a single box Young tableau. (Recall [1] that 
(10)_--- (10 . . .  0), while (a,b) designates the two-column U(n) irrep 
(2 a lb0n-a-b).) In other words, these fundamental tensor operators represent a vec- 
tor operator. We designate their components by C~ and define them as follows: 

(1) The operators C~, (1 <~ i ~< n) transform as a fundamental vector representa- 
tion, 

#3We refer to equation (x) or table x of Part I as eq. (I.x) or table I.x, respectively. 
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[Ejk, C~i t] = 6ikCTt. (15) 

(2) The action of C~i t on an arbitrary irrep carrier space is defined by its action 
on its canonical basis vectors, namely 

U W U W ' 
(16) 

with MEs given by the WE theorem 

< ; >  < A-t-crl A (0, 1) > 
+ = +  llC*ll > (17) W z W U i ' 

where the first factor on the rhs is the RME of the C t operator (see below) and the 
second factor is the U(n) CG coefficient for the coupling of canonical basis vectors 
of an arbitrary irrep A and the one box vector irrep (0, 1) #4 

(3) Finally, the action of the operator Cff on GT states of the irrep A -- A, in 
which the orbital n is unoccupied, is defined as 

,x° 

/~n-1 )~n-1 , (18) 
Wn-1 Wn-I 

where An = An-1 are the irreps of U(n) and U(n - 1), respectively. Graphically, the 
Weyl tableau characterizing the resulting state of irrep A, + cr is obtained by add- 
ing a box labelled with the orbital index n to the crth column of the Weyl tableau 
IV,_I, representing the initial state of the irrep An, i.e. 

C~t ~ ~ J ~  / =  / / "  (19) 

Note that at this stage the action of the operators C~ is defined for a general U(n) 
irrep with an arbitrary number of columns. 

It is obvious from the first condition above, defining C ~ as a U(n) vector opera- 
tor, that the superscript a designates the operator pattern (or the shift compo- 
nent). We shall see shortly that the last condition (3) determines the required RMEs 
<A + all CtllA> • Before we actually determine these RMEs, it is worth remarking 
that the above introduced operators C t are similar to ~- operators (referred to as 
fundamental Wigner operators) defined by Biedenharn, Louck and others [31- 
33,45]: they both represent unit vector operators, but differ in their RMEs, since T 

#4Clearly, the index i in the vector irrep basis II°'l)), i = 1, ..., n, represents the label in the single box 
Weyl tableau [T]. 
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operators are defined in such a way that their MEs are simply the corresponding 
CG coefficients, i.e. their RMEs are equal to unity. Another difference concerns 
the shift label. In the standard approach, the shift is defined through a row label 
rather than a column label used here. The latter has the advantage of yielding an n- 
independent formalism. It should also be noticed that for a given irrep all the opera- 
tors C~ t are not necessarily defined, since we require that a lexical state results. 
Thus, for example, the operator C/zt is not defined for any two-column irrep (a, b) 
when b = 0. 

To complete the definition of the action of the C~ operator on any irrep carrier 
space, eqs. (16) and (17), we have to determine the RMEs (A + all c* I1,  ). This can 
be done by exploiting eq. (18) or (19), since the RMEs depend only on the irrep 
labels involved. Thus, choosing a state in which the nth orbital is unoccupied, so 
that eq. (18) holds, we find that 

.-1 =I--<An+ IIC*IIA.> An (0, l) (20) 
-1 Wn-1 Wn-1 Wn-1 n ' 

where A = An = An-1. Consequently, 

(/~ q_ cr[[ C,i[)~)= (/~ if-cr ]/~ (0, 1) )  -1 (gA+ofA~ 1/2 
A A 0 = \ fx+~ ,/ , (21) 

where we have employed the results of Part I for the U(n) isoscalar factors, in parti- 
cular eqs. (I. 145) or (I. 154). Clearly, 0 = (0, 0), N u designates the number of boxes 
(i.e. the particle number) associated with the irrep # andfu designates the dimen- 
sion of # considered as an irrep of SN,, i.e. fu = dim([#]), [/~] representing a sym- 
metric group irrep (see Part I). 

In the case of two column irreps (2 a 1 b 0) --- (a, b), there are only two fundamen- 
1¢ 2t tal vector operators C i and C; , whose action on a given irrep (a, b) module takes 

the form 

C/t  : ( a , b ) - - + ( a , b + l ) ,  C 2t : ( a , b ) - - + ( a + l , b - 1 ) .  (22) 

The corresponding shifts A(cr) -- a for a = 1 and cr = 2, that yield the resulting 
irrep (a, b) + or, are thus given by (0, 1) and (1,-1) ,  respectively. For the relevant 
RMEs #5, we find from eq. (21) (or using table 1.2, types A and C) that 

( ( a , b  + 1)llftll(a,b)> = [(b + 1)(a + b + 2)/(b + 2)] 1/2 , 

( (a  + 1,b - l )[[Ctl[(a,b))  = [(a + a)(b + 1)/6] 1/2 . (23) 

The U(n) CG coefficients that appear in eq. (17) may be conveniently factored 
into a product ofU(n) isoscalar factors [see Part I, eqs. (I. 145) or (I. 154)], i.e. 

#5We drop the superscript cr from C since it is implied by the bra and ket irreps. 
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/ / ( ~ =  ) (  Ai I #i (0 '1))  A /~ (0,1) ~kt,~ (0,0) 
W U i \k=a Ai-l /~i-I 

x ~ ( A k  I #k (0,1)] (24) 
k=i+l /~k-1 #k-1 (0, 1) ' 

where A, =A,#n =# .  Thus, the bra and ket irreps for the subgroups 
U(m), m = 1,2, . . . ,  i - 1 must be identical, since below the ith level of the canoni- 
cal subgroup chain the operator ~ acts as the identity operator. We again empha- 
size that eqs. (17) and (24) are completely general, so that the MEs of ~ can be 
computed for any U(n) irreps as long as the relevant isoscalar factors are known. 
An explicit form of these isoscalar factors for two-column irreps was given in table 
2 of Part I. These general expressions considerably simplify in the case that one of 
the coupled irreps is the single box fundamental vector representation, as required 
for isoscalar factors appearing in eq. (24). The relevant expressions for these fac- 
tors are given in table 1. Choosing, further, the RMEs of C t, eq. (23), as the scaling 
factors c(A, or; A + or), A = (a, b), eq. (12), i.e. 

c[(a,b), (0, 1); (a,b) + or] = ((a,b) + crl[Ct[[(a,b)), (12') 

where (a,b)+cr=(a,b+l) for or=l ,  and (a,b)+tr=(a+l,b-1) for or=2 
(for explicit values see eq. (23)), we obtain even simpler expressions for the scaled 
isoscalar factors, eq. (11), that are also listed in table 1. In fact, it is remarkable that 
these scaled factors are a-independent, so that only the corresponding SU(2) irreps 

Table l ( ~ '  ( 0 , 1 ) ( a b ) )  
Unscaled and scaled isoscalar factor 'v , required for MEs of  vector operators a # 

# A' A v Unsealed Scaled 

(0,1) ( a , b - 1 )  

( a -  1,b+ 1) 

( a , b -  2) ( a , b -  I) -[(a+b)(b 2 - 1 ) / (a+b+ 1)]1/2/b -1  
( a -  1,b) ( a , b -  1) - [ a / ( a + b +  1)]l/1/b - 1 / ( b +  1) 
( a -  1,b) ( a -  1,b+ 1) 1 [b(b+2)]V2/(b+ 1) 
( a -  1 , b -  1) ( a -  1,b) - [ ( a + b ) / ( a + b + l ) ]  1/2 -1  

( a - 2 , b + 2 )  ( a -  1,b+ 1) - [ ( a -  1)(b+ 1)(b+3)/a]V2/(b+2) -1  
( a -  1,b) ( a -  1,b+ 1) [(a+b+l) /a] l /2 / (b+2)  1/(b+ 1) 
( a -  l,b) ( a , b -  1) 1 [b(b+2)]'/2/(b+ 1) 
C a - 2 ,  b +  1) C a - l,b) - [ ( a -  1)/al I/2 -1  

(0, O) (a,b - 1) (a,b - 1) (a,b m 1) [(b+ l ) / b ( a + b +  1)1 '/2 1 
(a-- 1,b) ( a -  1,b) (a+ b+  1) -1/2 [b/(b+ 1)1 I/2 

( a - l , b + l )  ( a - l , b + l )  ( a - l , b + l )  [(b+l)/a(b+2)] I/2 1 
( a -  1,b) ( a -  1,6) a -U2 [(b+2)/(b+ 1)] 1/2 

a Recall that the trivial isoscalar factors, i.e., in our case when A' = A,/I = (0, 1) and v = (a,b), 
both scaled and unsealed, equal 1. 
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play the role. The required matrix elements of C~/operators are then given by the 
product of these scaled isoscalar factors as implied by eq. (14), that now reads 

A + a  A A (0,1) A cr (s) 

W IC~ U ) = ( U  i I W ) 

assuming we use a real representation for U(n) CG coefficients. Thus, relying on 
eq. (24), we get when i = n, 

(AIn Cff A n ) =  ( An (0,1) 1Aln )(s), (25') 
w" (o,o) 

while for i < n wc can write 

W" Wn = An-I ( 0 , 1 ) A ' _  l Wn/ 1 Wn-l ' (25u) 

where A ~. = An + cr and Atn_l = An-1 -[- 7". 
We note, finally, that the corresponding Hermitian conjugate operators C~, 

representing annihilation-like operators, transform as the contragredient funda- 
mental vector representation, namely 

[Ekj, C71 = --6ikC 7 • (26) 

Their action is given by the conjugate of eq. (16) and their MEs satisfy the relation- 
ship 

( A + ~  CTt " = A U A . (27) 

4. Genera tor  matr ix elements 

There are several avenues open to us when deriving explicit expressions for the 
U(n) generator MEs. The most natural one is, of course, to regard the generators as 
adjoint tensor operators, associated with the irrep (113 - 1 ) ,  since E/j "annihi- 
lates" a box labelled wi th j  and "creates " one labelled with i. Such an approach, 
however, requires further development of the tensor operator formalism that will 
only be carried out in the following sections. Nonetheless, the same goal may be 
achieved using the simpler vector operator formalism that we have just outlined. 
The evaluation of U(n) generator MEs represents, in fact, a nice illustration of this 
formalism. 

Since the MEs of raising and lowering generators are simply related, we only 
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consider the former ones (E/j, i <j) .  To represent the generators E/j as vector opera- 
tors, we observe that their MEs must vanish unless the bra and ket state (Gel'fand 
or Paldus) labels are identical above thej th  level, so that these MEs are the same in 
all U(m) subgroups with m = n, n - 1 , . . .  ,j. Thus, the U(n) MEs of E/j, i < j  may 
be reduced to the corresponding U(j) MEs namely, 

w '  - w" w ,  ,,k=j / w j  E " 

It is now easy to realize that E/J ( i<j )  represents a U ( / -  1) vector operator, since 
obviously (cf. eq. (15)) 

[Ekt, E/j] =6itEkj, l <~k,l<~j-1. (29) 

We may thus write the required U( j )  MEs, eq. (28), as a product of a certain factor 
that can only depend on the U(j) and U ( / -  1) irrep labels and an ME of a funda- 
mental vector operator C~i, namely 

Wj /~j-1 ,~j-1 Wj'-I Wj-1 ' 

where Aj._ 1 = Aj-I + a. Expressing the last factor in eq. (30) as a product of the 
scaled RME and the CG coefficient, eq. (17), we can write 

Wj Wj = Aj_ 1 Aj-1 Wj-1 i Wjt._l ' (31) 

where the first factor on the right-hand side, representing a (scaled) RME of E (a 
generator), is the same as the corresponding factor in eq. (30), 

x ._l  j-1 - a -i aj-1 

, ( 3 2 )  hl-,  j-1 

assuming that we choose the scaling according to eqs. (12) and (13). The second fac- 
tor is then a scaled U(j - 1) CG coefficient (see also eq. (25)), whose general form 
is given by eq. (24) (where now all the quantities are appropriately scaled; we also 
note that in view of the chosen phase convention, all these quantities are real). 

The unknown generator RMEs, eq. (32), may be easily determined from the ele- 
mentary generator MEs given by Paldus formulae [2,3]. For example, when both 
nl = n - 1 and n are singly occupied in the bra and the ket, respectively, we have 
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(a, b) \ (~) 
( a -  1 ,b+  1) / 

( ( a - l , b + l )  (0,1)[ (a,b) )(s) 
x ( a - l , b + l )  (0,0) ( a - l , b + l )  , n , = n - 1  (33) 

and similarly for the other possibility that n and nl  occur in the first column of the 
Weyl tableau, when Aj_I = (a, b - 1). Since the scaled isoscalar factor on the right- 
hand side is equal to 1 in each case (see table 1), we find that the RMEs are also 
equal to 1. The remaining types may similarly be obtained by considering, say, the 
case with n doubly occupied in the ket and n and nl - n - 1 singly occupied in the 
bra. The relevant values of these RMEs are collected in table 2. 

In summary, we can thus express the generator MEs (28) as a single product of 
segment values, namely 

W ! No" "~- I I  t~Ak Ak )~J-1 ~j-1 \k=j 

x 
k=i+l /~k-1 (0,1) /~k-1 

(0,1) 1 A; )(s/e-1 
, 1-I 6~;~k. (34) 

x /~i-1 (0, 0) /~i-1 k=l 

Comparing this result with that of UGA (or GUGA) we immediately see that the 
generator RMEs (32) represent the top segment values, the isoscalar factors within 
the braces the middle segment values, and the rightmost isoscalar factor the bot- 
tom segment value. We must emphasize, however, that this result is completely gen- 
eral and applies to any irrep whatsoever. Of course, in order to exploit it we must 
be able to determine the required isoscalar factors and RMEs. For two-column 
irreps are required segment values are contained in tables 1 and 2. 

So far, we have treated the generators E/j as U(j - 1) vector operators. We now 

Table 2 
Nonvanishing raising generator RMEs ((a'Ab) E (a~b))= ((a,Ab) E (a,ub) )(~1, (cf., eq. (32)). 

A u E 

(a,b) (a,b- 1) 1 
(a,b) (a-  1,b+ 1) 1 
(a,b- 1) (a-  1,b) [b/(b + 1)] 1/2 
(a - 1,b + 1) (a - 1,b) [(b + 2)/(b + 1)] ~/2 
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wish to proceed one step further and express the generators in terms of our U(n) 
creation and annihilation vector operators C~/and C 7. Since ~ represents an U(n) 
adjoint tensor operator (see section 6), as do the operators Cy t Cfj (~r, z = 1,2), we 
can generally write 

e , j  = (35)  
O'~T 

In fact, the transformation matrix p must be diagonal, since E U leaves invariant 
any U(n) irrep module, so that 

In the special case of two-column irreps, only two values p, (r = 1,2) are required 
(C 3 produces a vanishing result when acting on any two-column irrep module). In 
fact, p can be shown to be the 2 x 2 identity matrix in this case. The easiest way to 
see this is to consider the MEs of weight generator Enn between states in which n is 
singly occupied. While the left-hand side ofeq. (35) will always yield 1 in this case, 
the right-hand side equals pk times the corresponding ME of kt k C~, C~, assuming 
that n occurs in the kth column of the Weyl tableau. Since the latter ME also equals 
1, we have that p~ = 1, (z = 1,2). Thus, we find that 

E O. = ~--~ p~CfitC~j = ~ C~/tC-Tj. (36) 
T T 

Using this result we can now express the generator MEs (28) in terms of MEs of 
C t C-type operators. Thus, for the E/j in the U(j) basis, eq. (30), we find that 

=r,~,~,(Aj~jT ( 0 , 1 ) A j ) ( s ) ( A j - r  (0, l ) A j )  (s) 
" i Wj' Wj" j Wj ' (37) 

where in the last step we employed eq. (25), its conjugate, eq. (27), and the reality 
of CGs. Expressing, finally, the U(j)  CG coefficients as a product of the 
U( j )  = U ( j  - 1) isoscalar factor and the U( j  - 1) CG coefficient, we obtain 

Wj' E/j Wj ~--' )~j-1 (0, 1) /~j-1 )~j-1 (0, 0) /~j-I 

x VFj-I i Wj_ 1 ' (38) 

since the second CG coefficient on the right-hand side of the last eq. (37) simply 
equals an isoscalar factor in view of the fact that we must have Wj"_ 1 = Wj-1 (and 
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thus, also A}'_ 1 =/~j-l). Comparing now this result with the preceding one, eq. 
(34), we see that the expression in curly brackets in eq. (38) represents in fact a gen- 
eral RME, so that 

E aj}= )% 
Aj--T 

Aj_, 

X '~j-1 

(0, 1) 
(0,1) 

(o,1) 
(o,o) 

Aj ) (s) 

Aj_1 
(39) 

Using the isoscalar factors listed in table 1 it is worthwhile to check that the 
RMEs given in table 2, that were obtained above with the help of Paldus formulas 
for elementary generators, do indeed satisfy the relationship (39) and may thus be 
obtained solely within the isoscalar factor formalism expounded in this series. 

In concluding this section, we must emphasize that all the above derivations 
were made for the case of raising generators E0, i <j. In an exactly analogous way 
we can handle the corresponding lowering generators, using the fact that E~ = Eji. 
Thus, for example, the generator RMEs that are required in this case are simply 
obtained from those given in table 2 by a transposition, since now 

Aj_, Aj_, Aj._, (0,1) 

Aj--T (0,1) 
x (o,o) 

~_] ) (s) 

Aj-1 

Aj ) (') 
'~J-1 

(39') 

so that 

(~ ,  EL A ) = < A  ER A ) _ ( A  E A )  (39") 

where the superscript designates the lowering (L) or raising (R) generator cases. 
We shall always employ raising generator RMEs in the following and thus drop the 
superscript to simplify the notation. 

5. Symmetric and antisymmetric tensors 

We have seen in the preceding section (eq. (36)) that the U(n) generators may 
be represented by a linear combination of products of creation and annihilation 
vector operators C t and C. Consequently, generator products or two-body opera- 
tors may be similarly represented using products of two C t and two C operators. 
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The latter are basically of two types, namely (C t C) (C t C) and (C t C t) (CC). While 
the former type corresponds directly to the generator products EuE~t, the latter 
type involves generators from the O(2n) extension of U(n) (cf. ref. [39]) and corre- 
sponds more directly to a standard second quantized form of two-body operators 
(see section 7). We refer to operators of the type (C t C t) as pairing operators (CC 
being their conjugates). We shall now examine the MEs of these pairing operators, 
while those of the (C t C)-type, representing U(n) adjoint tensors, will be examined 
in the next section. Relying on these results we shall then be able to effectively han- 
dle MEs of two-body operators (see section 7). 

The evaluation of pairing operator MEs leads us to the problem of handling the 
products of two irreducible tensors. Thus, for example, we can write 

wlcftc  w[ v U 

= <AIICtIIA1 + O')(A1-]-oIICtlIAI> 

x ~ u (  AI+O'U (0,1)] A ) ( i  W Wl'~l (O'l) l A l + c r ) j  U , (40) 

where we have used the WE theorem, eq. (17), in the last step. Clearly, A = A1 
+or + ~-. Although we could handle the quantities arising on the right-hand side of 
eq. (40) directly, it is much more convenient to exploit the recoupling procedure 
involving U(n) Racah coefficients. Indeed, considering the multiplicity free case 
and assuming that the CG coefficients are real, we easily transform the basic rela- 
tionship (I. 139), with the help of orthogonality properties of CG coefficients, into 
the form 

Z( I 
w1 

,~23, Wz3 

W2 W12 W12 W3 

U{Z~lZ~2/~z~3; z~12/~23} W2 W3 W23 WI I;)  (41  
W23 

Thus, assuming that the RMEs are equal to 1 and setting •2 ~-- A3 = (0, 1), we can 
interpret the left-hand side of eq. (41) as the ME of a product of two tensor opera- 
tors associated with irreps A2 and A3. With the help of recoupling, eq. (41), this ME 
reduces to the ME of a tensor associated with the irrep A23 that arises from cou- 
pling of A2 and A3. In the case of pairing operators this leads to the coupling of two 
vector operators, each associated with the single box irrep (0, 1). This coupling pro- 
duces tensors associated with the symmetic (1, 0) and antisymmetric (0, 2) two- 
box irreps. Exploiting, thus, the recoupling transformation (41) in eq. (40) we get 



28 8 2[. Li, J. Paldus / Unitary group tensor algebras. H 

/ --<' llCtll u + +  llCtll, l) 

× lp,(o, 
,X23, W23 

× ( (0, 1)j  (0, 1)]i W23/~23 )(  will W23~23 I~V) , (42) 

where again A = A1 + a + r, while A23 runs over the irreps (1, 0) and (0, 2) and 
W23 is uniquely determined by labels i and j. To simplify notation, we designate 
either tableau, namely 

(i<~j) or ~ ( i<j)  

as [ij] or ~i], since irrep labels (1, 0) or (0, 2) immediately imply which one is 
involved. Clearly, the antisymmetric (0, 2) irrep cannot arise when i = j. 

For the CG coefficients coupling two vector irreps we easily find (employing 
the same phase convention as in Part I) using table 1.2 that 

(i01, (01,p/10, / 
i j [ij] = [(1 + 6ij)/2] 1/2 

and 

( (0 ,1 )  (0,1)](0,2) (0,1) (0 ,1) (0 ,2)  
i j [ij] ) = - (  j i [ [/j] ) 

= [(1 - 6ij)/2] U=, (i<~j). 

It is then easy to verify that 

( [(n - l)n] - I ( 0 ~ ) )  = ( ,t H = 1 ,  

where nl - n - 1, which may also be regarded as a definition of the phase conven- 
tion employed. 

Now, within the spaces consisting of at most two-column irrep modules, the 
CG series involving symmetric and antisymmetric tensors are multiplicity free, 
namely 

(a,b) × (1 ,0 )=  ( a +  1 , b ) + . . . ,  

(a ,b)×  ( 0 , 2 ) = ( a , b + 2 ) + ( 1 - 6 b , 0 ) ( a + l , b ) + ( a + 2 , b - 2 ) + . . . ,  

where the dots indicate more than two-column irreps. Thus, the symmetric tensor 
has only one shift component while the antisymmetric one has three (assuming 
b¢l)0 .  This is consistent with the fact that we have four C t C t operators, namely 
C~tC) t and C2tCj 2t that are antisymmetric and shift (a,b)into ( a , b+  2 ) a n d  
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( a + 2 , b - 2 ) ,  respectively, and C~*C~ t and C/2tCj it, both shifting (a,b) to 
(a + 1, b) and yielding one symmetric and one antisymmetric tensor. 

The last CG coefficient on the right-hand side of eq. (42) that involves a sym- 
metric or antisymmetric two-box irrep A23 may be evaluated as a product of U(n) 
isoscalar factors whose explicit form may be found in table 1.2. However, we can 
again simplify eq. (42) by using the RMEs as appropriate scaling factors. We thus 
observe that 

c [ ( a -  1,b), (1,0); (a, b)]-- <(a ,b) l l f t l l v )<vl l f t l l (a -  1,b)) 

= [a(a + b + 1)] 1/2 , (43) 

independently of the intermediate irrep v, for which we have either v--- ( a -  1, 
b + 1), or u = (a, b - 1). In a similar way we find that 

c[(a, b - 2), (0, 2); (a, b)] --- ((a, b) ll C* II (a, b - 1))((a,  b - 1)11 C* II (a, b - 2)> 

= [ ( b - 1 ) ( a - k b ) ( a - b b q - 1 ) / ( b q - 1 ) ]  1/2 , (44a) 

c[(a - 1,b), (0,2); (a, b)] = c[(a - 1,b), (1,0); (a, b)] 

----- [a(a + b + 1)] 1/2 , (44b) 

c[(a  - 2 , b  + 2), (0,2); (a, b)] =<(a,b)llC*ll(a - 1 ,b  + 1)) 

× <(a- 1,b+ 1)llCtll(a - 2,b +2)>  

=[ (b+  3 ) ( a -  1)a / (b+ 1)] 1/2 (44c) 

Employing these scaling factors, eq. (9b), we can rewrite eq. (42) in the form 

((d,e)w, C~/JCTt' I(a 'b) W ) = ( ( a ' b ) w  C;C[ (d,e)w,) 

= ~ U{(O, 1)(O, 1 ) (d , e ) (a ,b ) ;u l  z} 
.=0,o),(o,2) 

× ( ( 0 ' 1 )  ( 0 , 1 ) [ z ~ ) ( ( a , b )  , I(d,e)  l (') (45) 
j i [ij] W I/j] W' ' 

where we have exploited the symmetry property of Racah coefficients, eq. (I. 137) 
and where 

(d,e) = (a,b) + ~r + "r, # = (a,b) + cr = (d,e) - ~-. (46) 

The explicit form of (scaled) isoscalar factors that are required for the evaluation 
of the last (scaled) CG coefficient appearing in eq. (42) or (45) may be obtained 
from table 1.2 and are listed in tables 3 and 4. Similarly, the required Racah coeffi- 
cients are easily found in table I. 3 (note that (0, 1) - (1)  designates a one-box vec- 
tor irrep). We thus arrive to the following explicit expressions for the MEs (45): 
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Table 3 
Unscaled and scaled isoscalar factors ( (a - 1 ,  b) 

k tensors. 
(1,0) [ ( a f t ) ) , #  required for MEs of symmetric 

/~ A u Unscaled Scaled 

(1,0) ( a - 2 , b )  ( a - l , b )  [ ( a - 1 ) ( a + b ) / a ( a + b + l ) ]  1/2 1 
( a -  1 ,b -  1) ( a , b -  1) - [ ( a + b ) / ( a + b + l ) ]  1/2 -1 
( a - 2 , b + l )  ( a - l , b + l )  - [ ( a -1 ) / a ]  '/2 -1  

(0, 1) ( a - l , b - 1 )  ( a - l , b )  
( a - 2 ,  b + l )  ( a - l , b )  
( a -  1,b) ( a ,b -  1) 
( a -  1,b) ( a -  1 , b + l )  

-[b(a+b)/a(b+ l ) (a+b+ l)] 1/2 -1 
-[(a - 1)(b + 2)/a(b + 1)(a + b + 1)] V2 -1 

(a + b + 1) -1/2 [b/(b + 1)] 1/2 
a -1/2 [(b + 2)/(b + 1)] U2 

(0, 0) ( a -  1,b) ( a -  1,b) [2/a(a+b+ 1)] '/2 v~ 

(i) For  cr = r, only the antisymmetric term survives, since we cannot  couple 
(1, 0) and (a, b - 2) or (a - 2, b + 2) to (a, b). Hence 

( (d,e) C~itC~j [ (a,b) l a O. ( (a,b) (0,2) l (d ,e ) / ( s )  
W '  W - v~ W [ij] W' ' (47) 

where 

1 if i<j, 
agj = 0 if i = j ,  (48) 

-1  if i>j, 
and 

f (a,b +2) if cr = 1, (d,e) (49) l ( a + 2 ,  b -  2) if cr = 2. 

Note  that  aji = -aij, while [ij] = [ji] by definition. 
(ii) When ~r ¢ r,  so that  r = ~ where 6 = 3 - cr, (or = 1,2), both symmetric and 

antisymmetric terms may contribute and we get 

( a + l , b )  C~Cj  ~ (a,b) 
W' W ) 

(a,b) 
= (1 + 5ij)'/zp~°)(o ") W 

-}- a/j(1 -- ~b,0)p~l) (O') ( ( a , b )  (50) 
\ W 

where 

(1,O) [ (a + l,b) l(s) 
w' 

(0,2) (a + 1,b) \(*) 

[ij] W' / ' 



X. Li, 3". Paldus / Unitary group tensor algebras. H 291 

 a ,o4 
Unscaled and sealed isosealar factors 
tensors. 

(0,2) l (a~)  | l  h ~ required for MEs of antisymmetric 
/z ] ] 

# A' A v Unscaled Scaled 

(0, 2) (a - 2, b + 2) ( a -2 ,b+  1) (a,b- 1) I 

r 11'2 
( a - 2 , b + l )  (a -  i , b + l )  La(b+2)(b+3) j 

[(. - 2)(b + 1)(b + 4)]  1/2 
(a-3 ,b+3)  ( a i l , b + l )  [ a(b+2)(b+3) ] 

(a-3 ,b+2)  (a-  l,b) [(a-2)/a] 112 

b(b+3) ]1/2 
(b + 1)(b + 2)J 

2 1]2 
[(b+ 1)(b + 2)] 

1 

1 

(a -  1,b) 

(a,b-2) 

(0, 1) (a-2 ,b+2)  

(a-  1,b) 

(a,b-2) 

_[(a+b)(b--l)(b+__.2)] '/2 
( a - l , b - 1 )  (a,b-1) L (a+b+l)b(b+l) J 

[ 2(a + b) ]1/2 
(a-  l , b -  1) (a-  1,b+l) [a(b+l)(b+2)J 

[ 2(a - 1) ]1/2 
( a -2 ,b+ l )  (a,b- 1) L(a~b+l)b(b+l) j 

[(a- 1)b(b+3)] I/2 
(a-2,  b+l )  (a -  1,b+l) -La(b+l)(b+2)J 

(a-2,b) (a-  1,b) [ (a-  1)(a+b)] 112 
[a (a+b+ l ) ]  

(a,b-3) (a,b - 1) 

(a-  l , b -  1) (a,b- 1) 

(a-  1,b- 1) ( a - l , b + l )  

(a -  i ,b-2)  (a- l ,b)  

(a-2 ,b+2)  (a-  1,b+ 1) 

( a -2 ,b+  1) (a-  l,b) 

(a- l ,b)  (a,b- 1) 

(a-  1,b) (a-  1,b+l) 

(a -  1,b- 1) (a-  1,b) 

( a -2 ,b+ l )  (a i l,b) 

(a,b-2) (a,b- 1) 

(a-  1,b- 1) (a-  1,b) 

(a+b-1)(b-2)_(b_._+ 1)] Ill 
(a+b+l)(b-1)b J 

[(a+b+21~(b- 1)b] ]1/2 

1 

ra+b-1] 112 
[a+b+ lJ 

[2(b+l) ]  1/= 
ta(b+2)] 

(2/a) In 

(:+b)(b+2) ]1/2 
a(a+b+l)(b+l)J  

r (a i 1)b ]In 
-La(a+b+l)(b+l)J 

2(b+l) 11/2 
(a + b + 1)bJ 

[ ~ ],/2 
[~ +-;~--~-rl 

[(b - l)(b + 2)] 1/2 
- [  b(b+ 1) 

2 [(b+ 1)(b + 2)] I/2 

i r b(b+3) ]1/2 
t(b + l)(b + 2)] 

1 

2 l,/2 
~ J  
(b - 1)(b + 2)] 1/= 

b(b+ 1) j 

1 

v~ 

[2@ + 31]'/= 
t b+2 J 

tb-73J 
[ b 1,,~ -Lg-gT]  
_ ~ ]  1/2 

[ b ] 1/2 

- Lg-~-SJ 

v5 
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p~) (or)= (_1)~(~-1)1 (b + 1 - (-1)~+a~ 1/2 
/~-+i J (51) 

As already noted, the CG coefficients involving the symmetric and antisym- 
metric tensors are equal to single products of isoscalar factors whose explicit form 
is given in tables 3 and 4. For example, assuming that i <j, we have that 

1;Vn [ij] W : ) '  -----/k~jI~.+l (Ak_l_  (1,0) Ak-1 ) 

{ / ~ (  Ak (0,1) 1 A~: )(~) } 

X 1 )~k-1 (0, 1) A~_ 1 

( h i  (O,l)A~ ) (s) i-1 
(52) 

X )~i-1 (0, O) I )~li-1 k=l 

and, similarly, for the antisymmetric tensor (0, 2). 
As an illustration of eq. (50), we consider MEs of < t  C2t and C 2. C~ t operators. 

In this case only the symmetric term contributes and we find that 

c,.tc t = \ \ ;  , (53a) 

o:tclt (b + 2~ x/e 
_ .  _ .  = (53b) 

Note that we can obtain the same result by directly using the MEs of C t opera- 
tors. Clearly, C it C 2. and C 2t C it represent distinct operators so that, generally, C/t 
and C 2t do not commute or anticommute. 

6. Adjoint tensors 

A tensor operator Aij that satisfies the relationship 

[Ekx,Au] =SitAkj--SkjAit, (k , l=  1,2,.. . ,n) (54) 

is called an adjoint tensor operator belonging to the irrep (1 (} [)  - (1 0. . .  0 - 1 ). 
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Clearly, the generators E/j are adjoint tensors, as are the four operators CflC~rj, 
(~r, r = 1,2). The action of an adjoint tensor operator A/j on a two-column U(n) 
irreducible module (a, b) produces modules associated with irreps given by the CG 
series 

(a,b) × <1 0i> = ( a -  1 , b +2 )  + ( 2 -  6b,o)(a,b) + (a+ 1 , b -  2) + . . . ,  (55) 

the dots indicating more than two-column irreps. Thus, the four adjoint tensors 
CT (cr, z = 1,2) are associated with three distinct shifts, the zero-shift of (a, b) 

• -J . . . . .  I t  2 into itself having mult~phc~ty 2 (assuming that b y~ 0). Indeed, the operator C i Cj 
shifts (a, b) into (a - 1, b + 2), C~ 2t C) shifts (a, b) into (a + 1, b - 2), while both 
C)tC) and C~tC] " shift (a, b)into itself. This multiplicity complicates the evaluation 
of adjoint tensor MEs, since a direct application of the WE theorem to the corre- 
sponding CG coefficients will not produce a single product of isoscalar factors. 
Instead, a sum over two multiplicity indices will be required, in general, at every 
level of the group chain. 

(-,2J" C, 2 A linear combination of two zero-shift adjoint tensors, C~tC) and "--i "-'j, is 
again a zero-shift adjoint tensor. We have already established that a simple sum of 
these tensors gives the corresponding generator, eq. (36), namely 

Eij= C ] t q  + C2tC 2 • (56) 

It is thus natural to ask which other linear combination of these zero-shift adjoint 
tensors will be the most useful in further development. Motivated by our earlier 
results, we shall look for a definition that would free us of any multiplicity problem 
and would lead to as simple a segmentation of the resulting MEs as possible. In gen- 
eral, we shall thus introduce three independent adjoint tensors producing distinct 
shifts as follows 

N~ +) = ~7(+)(b)C~t C 2 , (57a) 

N (°) = (1 - 6b,O)[rll°)(b)C~tC) + rl~°)(b)C2i t C2], (57b) 

- )  = (57c)  

where rl's represent suitable irrep module dependent scalar operators. Thus, these 
operators are invariant on any irrep module (a, b) and, as we shall see later, the sca- 
lars defining these operators depend only on the spin b = 2S of a given irrep, as 
the notation implies. Consequently, on a given irrep module (a, b), there is no need 
to distinguish these operators and the scalars that uniquely determine them. We 
may, of course, regard the three adjoint tensors N/(7 ) (~ = +, 0, - )  as forming a set 
N/j, shifting (a, b) into (a - 1, b + 2), (a, b) and (a + 1, b - 2), respectively, in addi- 
tion to the generator E/j that also shifts (a, b) into (a, b). It should be noticed, how- 
ever, that for b = 0 there is only one zero-shift tensor, namely the generator E~j, so 
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that N~ °) does not exist in this case (note that eq. (57b) yields a trivial zero operator 
in this case). 

Following the above outlined goal, we next attempt to find the irrep dependent 
scalar operators (or scalars) r/that enable a segmentation of the resulting MEs of 
adjoint tensor N~. ~). We shall thus try to choose the irrep invariant operators 77 in (~) . . . .  
such a way that the N~ MEs satisfy the following two conditions: 

(i) When m = r = max{i,j}, the N~. ~) MEs in the U(r) basis factorize as 

W: Wr ~'r-1 .~r-l p Wit-1 Wr-1 

where P = C ~ ,  p = C  t when r=j>i,  P=Cf,  p = C  when r = i > j  and 
P = 1 ,p = 0 when r = i = j .  The shift labels a or ~- are given by the irrep labels At-1 

/ 
and At_l, while Ar and A~r uniquely determine the label ~. For example, Ar = (a, b) 
and AI~ = ( a - 1 , b + 2 )  imply immediately that ~c= +. We shall refer to 
r = max{i,j} as a turning point, since below this level the vector operators C~ and 
C7, or the identity, come into play and determine the second factor in (58). We shall 
also call the first factor in (58) an N-p connecting factor for U(r) 2 U(r - 1 ), since 
it provides a connection between the operators N and P = C t, C and 1. The MEs 
of P for the C t and C type operators in the U(r - 1) basis are given by scaled CG 
factors, eq. (25), as shown in section 3. 

(ii) When m > i,j, i.e. for levels above the turning point r, the N~ ~) MEs in U(m) 
basis factorize as 

( "vm ) ( t  [ /~m ) ( / v r n - 1 - - ~  ') ) . (59) Wm N~) Am Am N N~ ~m-1 
t Wm /Vm-1 /~m-1 Vt2t,_l Win-1 

The first factor on the right-hand side, that depends on the U(m) and U(m - 1) 
irreps, will be referred to as the N-factor, while the second factor represents an N!. ~ ~ 

. . . . .  /J  

matrix element In the U(m - 1) basis. The labels ~ and a~ are uniquely determined 
by the irrep labels Am, A~m and Am-l, Am_ l, respectively. If there is no operator in the 
set N,~ that can shift Am-1 into A~_I, the corresponding N-factor is defined as zero. 

The first condition, eq. (58), may easily be shown to hold, since the action of 
operators P is multiplicity free, and represents in fact another form of the WE theo- 
rem. The second condition, eq. (59), on the other hand, represents a new require- 
ment and cannot be proved using the WE theorem, since there are two zero-shift 
adjoint tensors when Am-1 = Am_ 1. Indeed, according to the WE theorem, the 
right-hand side of eq. (59) should involve a sum over MEs of both N~ °) and Eij, so 
that the validity of the second condition, eq. (59), may only be fulfilled if we can 
define N~ °) in such a way that the E O. and N~ ) MEs are independently determined. 
Unfortunately, there is no general theorem that would ascertain the existence of 
such a factorization. We have thus proceeded in such a way that we first derived the 
form of the scalar factors r/using special cases in which the above conjecture is ful- 
filled. Of course, the N o. operators are not uniquely determined by conditions (58) 
and (59), since any constant multiple of N/j's or, equivalently, of irrep dependent 
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scalar factors 7/, will also satisfy these conditions, although with different N and 
N-p factors. We may thus exploit this freedom to obtain N and N-p factors that are 
as simple as possible and satisfy the desirable symmetry properties. In this search 
for optimal r/factors it is important to realize that while the non-zero shift tensors 
N~. +) and N~. -),1 are essentially unique (except for the adjustable factors r/(+)(b) and 
~7 (~) (b), respectively, that may be chosen in an optimal way just mentioned), this is 

the case for the zero-shift tensor N~ °) that is essentially determined by the ratio not 
of r/~°)(b) and r/l°)(b). The overall scaling factor may then again be chosen in such 
a way that symmetric and simple N and N-p factors result. 

Following this procedure, we arrived to the following optimal form for the irrep 
dependent scalar factors r/: 

~7 (+) (b - 1) -- V~b 
+ 2 
+ 1 - ~7(-)(b + 1), 

- ( 6 0 1  

Defining, thus, the N.~J ) operators acting on an (a, b) irrep module as follows 

3 c]tc . (61a) 
V b + 2  

N(°) = (1 - 5b,0) c ) t c )  - (b ~_ 2) c/2t Cj 2 , (61b) 

N~-)=  ~ /b~  1 c/2t Cj!, (6lc) 

we were able to show that eqs. (58) and (59) are satisfied in all possible cases, thus 
proving our conjecture for the case of two-column irreps. At the same time, we 
derived explicit expressions for the N and N-p connecting factors. 

To illustrate this procedure, let us first consider the MEs of an operator 
N~+)= c] tc~ in the U(m) basis with m>i,j. Taking Am=(a,b), so that 
Z m = (a - 1, b + 2), and using the resolution of the identity, we can write 

((a-l ,b+2)Wm I(a,b) l u ~ ( ( a - l , b + 2 ) I ( a - l , b + l ) )  
' Wm Wire Urn 

( (a- l 'b+l)  Cj: (a'b)) (62) 
X Um Wm " 

The sum over Um is obviously equivalent to the sum over/dm_ 1 and Um-l,#m-] 
being the U ( m -  1) irrep label for the intermediate configuration [Urn). Since 
i,j < m, the occupancy of the rnth orbital must be the same in the bra and in the ket, 
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i.e. in W~m and W m. Assuming that this orbital is singly occupied and m appears in 
the second column of both W~m and Wm (other cases may be treated in a similar 
way), we have that Atm_] = (a - 2, b + 3) and A,,-1 = (a - 1,b + 1). Then the only 
possible value for/zm-1 is (a - 2, b + 2), so that relying on eq. (25) and factorization 
of CG coefficients in terms ofisoscalar factors (see Part I and eq. (24)), we get 

( ( a - 1 , b +  1 ) ( 0 ,  1) I ( a -  1,b + 2))(s) 
® =  ( a - 2 , b + 2 )  ( 0 , 1 ) ( a  2 , b + 3 )  

( ( a - 1 , b +  1 ) ( 0 ,  1)] (a,b) )(s) 
x ( a - 2 ,  b + 2 )  (0, i ) ( a - l , b + l )  

x ~ ( ( a -  2, b + 3 ) _  W,~_,' C:'  (a - 2, b + 2) ) U , , , _ ,  

( (a -2 ,  b+2) Cj2 ( a - l , b + l ) )  
× Urn-1 W,,,-1 
v / ( b + 2 ) ( b + 4 )  ( ( a - 2 ,  b +  3) ( a - 1 , b +  1 ) )  

--  b +  3 ( - 1 )  Wtm_ 1 C]tC 2 Wm-I , 
(63) 

where we used the explicit form of scaled isoscalar factors (see table 1) in the last 
step and deleted the sum over intermediate states at the U(m - 1) level. The result- 
ing factor -[(b + 2)(b + 4)]1/2/(b + 3) thus represents the N-factor for the choice 
r/+) (b) = 1. Using the properly scaled definition (61 a) we thus get 

-1 ,b+2)  N (a,b) \ 
2, b+ 3) (a-  1,b+l) / 

a ((a 
V ~ - - 2 k ,  b / b ~ ( v / ( b + b + 3 2 ) ( b + 4 ) )  bb~_~3 - 4  - 1 ,  (64) 

since the operator C]tC2.. on the right-hand side of eq. (63) must be replaced by 
4 it 2 . / .  " v/(b + )/(b + 3) G Cj 0t now acts on the lrrep (a - 1, b + 1)). We also see that the 

chosen scaling simplifies the resulting N-factor. It is worth emphasizing that the 
choice given by eqs. (60) and (61) was made after we examined all relevant cases as 
well as MEs of spin-dependent operators that will be the subject of future commu- 
nications. 

To illustrate the choice for the ratio of rl~ °) (b) and r/l°l(b), we now choose the 
same irrep at the U ( m -  1) level in the matrix element ®, eq. (62), ie. 
A~m_l = Am-1 = (a -- 1, b + 1), which implies that m is singly occupied in the first 
column of W~m and the second column of W,,,. With this choice, the irrep ~m-1 can 
take on two distinct values, namely (a - 1, b) and (a - 2, b + 2). Expressing again 
the MEs of C operators as a product 0fthe U(m) ~ U(m - 1) isoscalar factor and 
U(rn - 1) ME, we can write 
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O - V b + 2 1 ,  ( a - l , b )  (0,1) (a 1 ,b+ l )  

( ( a - l , b + l )  (O,l)[ (a,b) )(~) 
× ( a - l , b )  (0,1) ( a - l , b + l )  

× z ( ( a - l ' b + l )  c:t (a - l ' b ) ) (  Wtm-X Urn-1 Um-I C) ] ( a -  1,b+l))Wm_l 

( ( a - l , b +  1 ) ( 0 , 1 / i  (a- 
+ (a 2, b+2)  (0,1) (a 1 ,b+l )  

( ( a - l , b + l )  (0,1) I (a,,) )")  
× (a 2,b+2) ( 0 , 1 ) ( a - l , b + l )  

x v~_~ ( (a- l'b + l) czt (a- 2'b + 2) Vm-1 

( ( a - 2 ,  b+2)  C j2 ( a - l , b + l ) ) }  (65) 
X gin-1 Win-1 " 

The sums over Urn-1 and Vm-1 result in MEs of C]tC) and operators, so 
that using the explicit form of the isoscalar factors (table 1) we get 

b + 3  1 
® --~b--~2 ( - 1 ) b ÷  1 

( ( a - l , b + l )  C~tC ) b+Ic2tcj2 ( a - l , b + l ) )  (66) 
x W~m_ 1 b + 3  Win-1 " 

Thus, in order that the second factorization, eq. (59), holds, it is necessary that we 
choose for the ratio ofr/~ °) and 7)I °) the value 

rl~°)(b)/rl}°)(b) = -b/(b + 2), (67) 

assuming that the operators act on the irrep module (a, b) (note that in eq. (66) the 
operators are acting on the (a - 1, b + 1) irrep module). Thus, with the definition 
of Ni(j °), eq. (61b), we find for the relevant N-factor the value 

( (a- l ,b+2)  N (a,b) ) b ~ 3 ( _ l )  1 ,//~b__+l) 
(a 1 ,b+ l )  ( a - l , b + l )  = Vb+2  b--~V b + 3  

= -  ( b + l ) ( b + 2  (68) 

This calculation may be easily repeated for other cases. Remarkably enough, we 
(0) (0) always get the same value, eq. (67), for the ratio of 772 and 7]1 when acting on the 

(a, b) irrep module. For example, considering the N~ -) ME with A~ = (a + 1, 
b -  2), Am = (a, b), Am' -1 = Am-1 = (a, b - 1), we get for this ratio the value 
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- ( b  - 1) / (b  + 1), since the operators are now acting on the (a, b - 1) module. We 
can thus verify that the operators N~. ~) defined by eqs. (61) do indeed satisfy condi- 
tion (59) in all possible cases. At the same time we obtain explicit values for nonvan- 
ishing N-factors that are collected in table 5 and possess the following symmetry 
property 

In a similar way we can derive explicit expressions for the N-C*, N-C and N-O 
connecting factors: we simply take m = r = max{i,j} and consider all possible 
occupancies of the rth level. These connecting factors are essentially given by the 
product of two scaled isoscalar factors for vector operators in which at least one of 
the two (0, 1) irreps reduces to the scalar (0, O) irrep. We find that these factors 
satisfy the following symmetry properties 

X' A' 
A] Nd ) (70a) 

v ~ - o '  

and 

A' A' 
(70b) 

Table5 / 'V]  / 
N factors ~ A N (a'ub) , required for MEs of N operators. The unnecessary (1 - 6b,o) factors 
are omitted) 

A' A v N 

(a - 1, b + 2) (a - 2, b + 2) (a - 1, b) 
( a - l , b + l )  ( a , b -  1) 
( a -  1 ,b+ 1) ( a -  1 ,b+ 1) 
( a - 2 , b + 3 )  ( a -  1 ,b+ 1) 

(a, b) (a - 1, b) (a - 1, b) 
(a,b - 1) (a,b - 1) 
(a ,b-  1) ( a -  1 ,b+ 1) 
( a -  1 ,b+ 1) ( a , b -  1) 
( a -  1 ,b+ 1) ( a -  1 ,b+ 1) 

(a + 1, b - 2) (a, b - 2) (a - 1, b) 
( a+  1 , b - 3 )  ( a , b -  1) 
(a ,b -  1) ( a , b -  1) 
(a ,b -  1) ( a -  1 ,b+ 1) 

1 
-[b(b + 3)/(b + l)(b + 2)] 1/2 
-[2/(b + l)(b + 2)] V2 
-1 

1 - gb,0 
[(b - 1)(b + 2)/b(b + 1)] 1/2 

-[2/(b + 1)(b + 2)] 1/2 
-[2/(b + 1)(b + 2)] 1/2 

[b(b + 3)/(b + 1)(b + 2)] I/2 

1 
-[(b - 2)(b + 1)/(b - 1)b] 1/2 
- [ 2 / ( b -  1)b] */2 
--1 
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Table 6 (A' ,b ) 
N-O connecting factors N (a A) (Unnecessary (1-  6,o) factor is omitted.) The symbol 
{x/y} is defined in eq. (71). \ A 0" ' 

A' A N-0 

( a - l , b + 2 )  ( a - l , b + l )  {3/2} 

(a,b) ( a -  1,b) 0 
(a ,b-  1) {2/0}/v'~ 
( a - l , b + l )  -{0/2}/v'~ 
(a,b) 0 

( a + l , b  - 2 )  (a ,b-  1) {1/0} 

Their explicit values are collected in tables 6 and 7. Here and in the following it is 
convenient to define the symbol (cf. ref. [37]) 

, ~ + _ k  (71) 
{ k / l }  - V b + l ' 

which enables a more compact representation of the resulting connecting factors 
(corresponding to the segment values of refs. [4,37] or ref. [11]) and is used in tables 
6 ,7 ,9 ,  10, 12 and 13. 

In summary~ applying successively our factorization rules, eqs. (58) and (59), 
the MEs of  Nb ~) , (n = +,  0, - )  tensors, eqs. (61), may be expressed as a single pro- 
duct of  level segment values. Proceeding from the top level downwards, these seg- 
ment values are given, respectively, by the N-factors (from the top level n to the 
turning level r), an N-(Ct, C, 0) connecting factor at level r, and vector operator 
scaled isoscalar factors for levels below r. When i = j, no segment values are needed 
for levels below r. Thus, for example, when i < j  = r, we have that 

Table 7 (,V ~ b )  
N-C t connecting factors N ( a )  {x/y} is defined in eq. (71) ~. A ct' (Unnecessary (1 - 6b,O) factor is omitted.) The symbol 

A' A u N-C~ 
( a -  1,b + 2) ( a -  1,b + 1) ( a -  1,b) -{3 /1}  

( a -  1 ,b+2)  ( a -  1 ,b+ 1) {3/2} 

(a, b) C a, b - 1) (a - 1, b) - (2/1}/v"2 
( a -  1,b + 1) ( a -  1,b) {0/1}/v"2 
(a, b) (a, b - 1) {2 /0} /v~ 
(a, b) (a - 1, b + 1) - {0 /2} /V~  

(a+  1 , b - 2 )  (a ,b-  1) ( a -  1,b) -1  
(a+ l,b - 2) (a,b - 1) {1/0} 
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t ~k-1 t Wn k=j+l Ct 

× ( " ~ ' (  Ak (0,1)[ A~ ) ( ' ) } (  Ai (0,1) 1 Ati, )(~)i-li_[saZ,~,. (72) 
I.k=i+l /~k-I (0,1) "~k-1 "~i-1 (0 ,0 )  /~i-1 k=l 

To conclude this section, we express the C~tCf tensors in terms of the E O. and 
N~ ~) operators. Inverting eqs. (56) and (61) we get 

b ~  2 ,~(+) 
c]t CJ2 = V b - ~  ~vO ' (73a) 

: (73b) 

b 1 b( 2) u O) 
c]tc) :2(b+ 1)e° + (73c) 

b + 2 1 b ( ~  2) N~0) (73d) c2tc2:2(b+ I)EO" b + l  

it 2 2t 1 Hence, the MEs of C~ C. and C~ C. operators are simply related with the MEs of + J J 
N~. ) and N~. -) tensors, respectively, both given by a single product of segment 
vaJues The ~lgs of C]tC) and C~ t C. 2 operators, on the other hand, are given by the • j 

of two terms corresponding to the MEs ofE O. and N[ °) tensors, each of which s u m  

is expressible as a single product of segment values. 

7. Two-body operators 

We now finally turn our attention to generator products that appear in the two- 
electron part of the electronic Hamiltonian. In fact, it is both more appropriate 
and simpler to directly consider the MEs of two-body operators eikv't, whose second 
quantized form is 

eik;/t E t t = x j '< . , , xk , . , x j , . ,  (74) 
rn,r~ =a,/3 

with Xtm(Xjm) designating the creation (annihilation) operator associated with the 
orthonormal spin orbital [jm). Expressing the two-body operators eik;it in terms of 
U(n) generators, we get a product term as well as a linear correcting term, namely 

eik;]l = E i k E j l  - 5 jkEi l  , (75) 

as is well known [2,3]. Using the relationship between the U(n) generators and our 
vector operators, eq. (56), we can write for the generator product 
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0- 0- 

: E CJ °tC~itC'~kC7 + 6jkEi,, (76) 
0"17" 

where we have used property (15) in the second step. Thus, we have that 

eikjt - EikEj, - 6jkEit = Z c~tj C'~t C'~k CT ' (77) 
0".7- 

is complete analogy to the second quantized form, eq. (74). In fact, this correspon- 
dence may be extended to the general k-body case, 

cT ' t  c~. .2t cTkt cp/. CT2CT.. ~ 
q 12 " ' "  zk Jk  " ' "  J2 J l  

7"1 ) 7-2 ) . . .17-k 

- x t  x t  x t 
- -  . , k m k X j k m k  ~j2m2~jlml (78 )  t i rol  12m2 . . . . .  

m I ~m2 r . . ) m k  

where the right-hand side sum extends over all spins and the left-hand side one 
over operator patterns. This correspondence, eq. (78), may be easily proved since 
the second quantization operators X~ and X have the same properties as the vector 
operators C t and C under the action of U(n) generators, namely 

[ E ( j , X ~ k m ] ~ - - ~ j k ~ , X ~ T m  , [ E o ' , X k r a ] - - - ~ - ~ i k X j r n ,  E i j - - ~ - ~ X ] m X j r n .  (79) 
m 

Consequently, both sides of the correspondence relationship, eq. (78), are identical 
when expressed in terms of U(n) generators. This correspondence enables us to 
express k-body operators in terms of U(n) tensors. We must, however, emphasize 
that this correspondence relationship expresses only a formal similarity between 
the vector operators C t, C and second quantization operators X t, X since they are 
defined in different groups: while the vector operators C t and C act on the orbital 
group U(n) modules, the second quantization operators x t  and X act on the mod- 
ules of the spin orbital group U(2n). The real meaning of this correspondence, eq. 
(78), is that we can either couple the fundamental U(n) tensors c t  and C within the 
U(n) framework to obtain higher rank U(n) tensors, for example the two-body 
operators in eq. (77), or we can express these U(n) operators as spin contractions of 
U(2n) operators, as in eq. (74). 

The first step in evaluating the two-body MEs is to classify the operators eik~l, 
as was first done by Paldus and Boyle [37]. Without restricting the generality of our 
considerations, we can assume that l is the largest label, i.e. l = max{i,j, k, l}, 
since 

+ + (80) eik~it : ejl;ik : e l j , k  i : e k i , l  j • 

We also assume that none of the generators involved in the product is a weight gen- 
erator, i.e. that i ~ k a n d j  ~ l, since this case reduces to a single generator case. 
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The possible cases that arise are listed in table 8, where we also indicate the relation- 
ship with the classification given by Paldus and Boyle [37]. Moreover, the first 
case, when there is no overlap of generator regions [i, k] and [j,/], also reduces to a 
single generator case, since the ME in this case equals a simple product of ME's of 
the generators involved. Finally, we recall that the irrep labels in the bra and the 
ket associated with the subgroups U(m) with m > ~ l = m a x { i , j , k , l }  and 
rn <p  =- min{i,j, k, l} must be identical lest the ME vanish, i.e. 

A A 6x-A., 6x'~am . (81) 
W '  eik;il W = W[ ~'VI 

In the following developments we shall thus assume this requirement to be satisfied 
so that we can evaluate the required MEs in the U(/) basis. 

The tensor operator formalism that we briefly outlined at the outset of this 
paper offers numerous possibilities for the evaluation of the required MEs. The 
most obvious procedure is to decompose the operator, whose matrix elements we 
wish to evaluate, into its irreducible components and apply the WE theorem. In the 
case of two-body operators (77) we can expect the resulting irreducible tensors to 
contain two C- type  and two C-type operators. We shall examine this possibility 
more closely in our future communication [46] dealing with spin-dependent opera- 
tors when more general two-body operators (non spin-preserving) must be consid- 
ered. In this paper we shall follow a simpler route expressing MEs of two-body 
operators in terms of MEs of various tensor operators considered in the preceding 
sections. We thus first establish the relationship between the eik;il operators and vec- 
tor, symmetric, antisymmetric and adj oint tensors. 

We start by examining the possibilities at the highest level l -- max{i,j, k, l}. 
Since we exclude trivial weight generators (i ¢ k , j  ¢ l), at most two labels can be 
identical, so that we must distinguish three cases, namely (i) eikjt with i,j,  k < l, (ii) 
eit;it and (iii) elk;il, which we now consider in turn: 

(i) The first possibility, eik;it (i,j, k < l), arises in cases 2, 4 and 6 of table 8 (recall 
that case 1 of table 8 reduces to a simple product of single generator MEs and 

Table 8 
Classification of two-body operators eikjt and its relationship with the 
Boyle ~B) [37]. 

classification of Paldus and 

Case Condition PB [37] 

1 i < k < j < l ,  k < i < j < I  al ,b l  
2 k < i = j < l ,  i < j = k < l  a2,b2 
3 i ~ j < k  = l a6,a7 
4 i<~j<k<l, j < i < k < l  a3,a4,a5 
5 j<~k<i = l b6,b7 
6 j<~k<i<l,  k < j < i < l  b3, b4,b5 



X. Li, J. Paldus / Unitary group tensor algebras. H 303 

need not be considered here). Using the definition of e~jt in terms of U(n) [or 
U(I)] generators, eq. (75), we can write 

(At  eikfl A' ) (Al  Eik IZll(IZl IA t l  
(eikfl) --- W/ Wt = ~ W: Ut Ut Ejt ~l,vj Wt 

At -6jk( w ~ Eitl At vet ) '  (82) 

where/zt = At and, moreover, #t-1 = A~_I since i, k < l. Reducing matrix elements 
of Ejt and Eit generators using eq. (30) and subsequently exploiting commutation 
relation (15),we get 

( Al E Al ) (  A'-I a;;/k A'-I ) (83) 
(eik~it)= A}_ 1 At-1 W;_ 1 WI-I ' 

where we defined a new operator 

a~- C~j Ei (83') ;ik ~- k ,  

with cr given by the irreps at the U(I - 1 ) level, 

At-! + = a}_l. (83") 
We thus find that the required ME (e~kjt) is given by the product of a generator 
RME for U(I) ~ U(I - 1) and a ME of a G-type operator in the U(I - 1) basis. We 
now proceed with our examination of basic types at the lth level and will return to 
the evaluation of the G-type MEs later on (see also our work on spin-dependent 
operators [46]). Thus, the ME of eo, jt, eq. (82), may be expressed in the form 

(At [ ]  At ) (  A~_ 1 G~ik j A t - l )  (84) 
(eikjl)= A}_l e At-1 a W[-1 Wl-1 ' 

where we introduced the so-called e-G connecting factor 

At At At At (~) 

AI_I 
i.e. as a product of an e-G connecting factor for U(/) ~ U ( / -  1) levels and a ME 
of a G-operator in the U ( / -  1) basis. 

(ii) The second possibility, e/jjt (i,j < l) arises in case 3 of table 8 and produces a 
vanishing ME unless l is doubly occupied in the ket and unoccupied in the bra. Set- 
ting At = (a, b) we can write 

\((a,iv[b) eil;il (a,vg) (eiljl) 

= ((a,b) c~tc)tc:c~ (a,b) IV[ l C:'Cj2'C~C:+ Wt ) '  (86) 
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since the shift labels of two Ct operators cannot be the same. Employing, thus, 
eqs. (53) and subsequently using eq. (50) we finally get 

((a,b) / b cltc2t b ~ 2 r , 2 t r l t l  ( a -  1,b) (eeljl) 
~'_1 V~--~ ' J + V b - - ~  ~; ~J r~_x / 

=(1+ ~t)')1/2 ( ( a - -  i,b)w)_l (l,0)[/j] [ _)~[b  I (~) 

(a,b) (a,b) (a-l,b) (1,0) , (87) 
-((a,b) e (a- l ,b))s(  Wt-1 [ij] I(~[bl)(s)_ 

where, for the sake of consistency, we introduced in the last step the e-S connecting 
factor (S stands for a symmetric tensor), given by (1 + 6~/)1/~. Note that the contri- 
bution from the antisymmetric tensor cancels out, so that formally 

(a,b) (a,b) (a,b) (a,b) 
((a,b) e ( a - l , b ) ) s  = ( l+6 / j )  1/2, ((a,b) e (a - l, b) ) a =  0 " (88) 

(iii) In the last case, etkjt (j, k<  l), corresponding to case 5 of table 8, we can 
write 

elkjt = ~ ~j EtkCT, (89) 
Cr 

so that 

At etkjt At) 
(elkjl) -- ( W[ W1 

A, Etk .t ) ( .t C7 A, 
UI VI Vl W I .  

-----r~---~u~(Al jCj .°'t. ~ I ) (  Izl Elk l lZ l ) (  IZl (°,1> I )"> (90) 
W I UI UI V I AI_ I (0,0) AI_ I ' 

where Vt-1 = Wt-1 and #t = At - a. In the last step we employed eq. (25') at the 
U(1) level. Employing, next, eqs. (30), (32) and (27) for the generator matrix ele- 
ments and eq. (25") with n = I for the vector operator matrix elements, we find that 
the ME (90) reduces to 

Al-ff 
~,~ A~ x - ~  (0 ,1 )  A ~ _ l j  (s> 

_ A t A~_I - ~ - .  

(At -o r  (0,1) At )(s)( A~_I C~jC~ AI-1) (91) 
× A1-1 (0, 0) At-1 W[_x ~ - 1  ' 

where p = At-1 - A~_ 1 + -r. We can then express the ME of cjtc~ in terms of MEs 
f (~) o Ejk and Nj~ tensors using eqs. (73a)-(73d), so that we can finally write 
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(etkj t )  = (  At e At / \ ~E/A~_I Ejk A,-I 

g'~-I AI-1 W;_ 1 ) 

+ A _I AI-1 N W[-1 Wt-1 ' 

where  ~ = + ,  0 or  - is un ique ly  f ixed by  the irreps At-i and  A~_ 1 (in fact,  for  
p - ~- = At-1 - A~_ 1 = 1, ~ = + ,  for  p - r = - 1 ,  ~ = - and  for  p = ~-, ec = 0; recall  
tha t  for  the shift  labels or, ~-, p we use the conven t ion  tha t  cr = 1 - (0, 1) and  
cr --- 2 -- (1, - 1 ) ) .  Thus ,  the e-E and  e-N connec t ing  fac tors  depend  on  two  isosca-  
lar fac tors  and  an R M E  appea r ing  in eq. (91) as well as on  the coeff ic ients  re la t ing 
the ad jo in t  t ensor  c o m p o n e n t s  wi th  E/j and  N}/~) tensors ,  eq. (73a)- (73d) .  I t  m u s t  
• be  r e m e m b e r e d  tha t  the la t ter  coeff ic ients  are  l rrep label dependent .  W e  have  col- 
lected all the re levant  e-E and  e-N fac tors  in table  9. 

T o  i l lustrate  h o w  the results  l isted in table  9 m a y  be  easily der ived,  we p rov ide  
an example .  Clearly,  in this case, t h e / t h  orbi ta l  m u s t  have  the same o c c u p a n c y  in 
the  b r a  and  in the  ket.  W e  set At = (a, b) and  assume,  for  example ,  tha t  the l th level 
is singly occup ied  in the first  c o l u m n  o f  b o t h  Wt and  W' t, so tha t  
At-1 = A~_ 1 = (a, b - 1). Then  the second  isoscalar  f ac to r  on  the r igh t -hand  side o f  
eq. (91) vanishes  unless  ~r = 1, in which  case A t -  cr = (a ,b-  1). Fur the r ,  since 
Al-1 = A}_I, we have  tha t  p = ~ -  and  thus  for  p = ~ - =  1 we  f ind tha t  
A~_ 1 - ~- = (a, b - 2) while  for  p = ~- = 2 we have  A~_ 1 - ~- = (a - 1, b). F ind ing  the 
a p p r o p r i a t e  values  for  the resul t ing isoscalar  fac tors  f rom table  1 and  o f  the  corre-  
spond ing  R M E s  f rom table  2, eq. (91) yields in this case 

(a,b) etkj l  (a,b) \ 
(a ,b -  1) (a ,b -  1 ) )  

/ 

w;_l wt-1 / 

( (a,b-1) g-,at/-,1 1__~C2~C2 ( a , b - 1 )  / (93) 
-~---  W I _  1 ~J ~k + b + l J Wt-1 " 

Table 9 
and ~e-N connecting factors / L((a,x,.,)e (a~u))"\ ,providing top segment value at level e-E \ . - ,  1.t / E,N 

i = l( >j ,  k) for the evaluation of eikjt MEs in terms of MEs of Ejk and N)ff ) operators. Notation of 
eq. (71) is employed. 

A u e-E e-N 

(a,b) (a,b) 0 0 0 
(a,b - 1) (a ,b -  1) - 1 / 2  -{  - 1 /1}/v~ 0 
( a -  1 , b+  1) ( a -  1 ,b+  1) - 1 / 2  {3/1}/v~ 0 
( a , b -  1) ( a -  1,b + 1) 0 {0/1} - 
( a -  1 , b+  1) (a ,b -  1) 0 {0/1} + 
(a - 1, b) (a - 1, b) - 1 0 0 
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Recalling (eqs. (73c), (73d)) that 

rl b -  1 1 , / (b-  1)(b + 1) mr(O ) c) t • -~k-- 2b Ejk+-bV 2 ~'ik , 
and 

(94a) 

Cj2f r-2 b + 1 _ ( ( b -  1)(b + 1) N)o) 
L)-k _ 2 ' 

(94b) 

when acting on the (a, b - 1) irrep module, we finally find that 

I (a'b)elkjl ( a ' b ) ) I  Ejk ) 1 (a,b- 1) (a,b- 1) 
(a,b- 1) (a,b- 1) -- - 2  IV[_ a WI 

wt-l 

~ 2  b - 1  ( (a 'b-1)  N)~) (a 'b-1))  (95) 
- i )  wt  ' 

yielding immediately the e-E and e-N factors (as well as a) listed in the second 
row of table 9. Other cases are treated in an analogous way. It is worth noting that 
the e-E and e-N connecting factors are symmetric 

( A e#  A)x:(Aeu u #A) X : E , N  (96) 

as follows from table 9. 
We now return to the evaluation of G-type MEs that are required in case (i) 

above, eq. (84). Introducing again the resolution of the identity, 

( A ' _  l A / -1 )  
(a}~ik) =-- Wlt_l G;~ ik Wl_l 

~- Z ( A'-I ~J ]Zl-1 ) (  ~1-I Eik Al-I ) 
,uI-I,UI-, W;-1 Ul-I Ul-I Wl-1 

we see immediately that we must have that #m = Am for rn = l -- 1, l -- 2 , . . . , s  
where s = max{i, k}. In fact, it is convenient to choose r = max{i,j, k} >~.s and to 
reduce the right-hand side MEs to the U(r) basis. This is easily achieved realizing 
that the E/k MEs are the same in both U(I - 1) and U(r) (in fact U(s)) bases, while 

o~ stepping down each level in the MEs of C~ introduces an appropriate isoscalar fac- 
tor, eq. (25"), so that 

1-1 ( Am (0, 1) 

(@~ik> = H Am-1 (0, 1) re=r+ 1 
r --- max{i,j, k}. 

A2_! w" wr ' 

(97) 
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After the rth level, only MEs of simpler tensors, that were considered earlier, can 
appear. Four cases may arise at this step that we now consider in turn (we again 
ignore the trivial case when there is no overlap of generator regions): 

(a) When k < i = j = r, r = max{i,j, k}, the G operator ME reduces to the ME 
of C~, since the ME of ~ in U(i) basis is given by a simple isoscalar factor, eq. 
(25'), while the ME of E,j is given by the product ofa  RME of E and the ME of ~ in 
the U(i - 1) basis. We thus get 

A'i Ai ~--,/ A'i \ / A i  Ai 
I Wi I G~ik W i l  = ~ Wil I C~i hi u i / \  ui E~ ~ > 

~'i-1 (0, O) hi_ 1 

( hi El hi >( ~'--1 ] /~i--1 > 
>( hi_l /Vi_ 1 W:_l ~kk Wi-1 

_ <  A, GI Ai > < A'i-1 (0,1)[Ai-1 >(s), (98) 
h~_l hi-1 c W'-I k Wi-I 

where h~_ 1 + r = hi-1 and where we defined the G-C connecting factor 

h ' iG h i >  (hi (0,1) hi E h i >  
)~i--1 hi-1 c = , . (99) ! /~-1 (0, O) hti_l hi_ 1 hi_ 1 

In fact, since the ith level must be doubly occupied in the bra and unoccupied in 
the ket, we must have that h' i = (a,b) and h~_ 1 = ( a -  1,b), while hi = hi-1. The 
only possible values for the latter irrep labels v -= hi = hi-1 that yield a nonvanish- 
ing isoscalar factor on the right-hand side of eq. (99) are u = (a,b- 1) and 
u = (a - 1, b + 1), as may easily be seen from table 1. Since in each case the relevant 
RME equals 1, the G-C connecting factors are in fact given by the isoscalar factor 
on the right-hand side of eq. (99). The possible values of this connecting factor are 
listed in table 10. 

(b) In a similar way, when i < j  = k = r = max{i,j, k}, we find that 

<h~: G~;ik h k > _ _ (  hk (0,1)[ h~ ,~(s) 
w~ rvk h~_l (0,0) h~_l / 

/Vk_ 1 hk-1 Wk_ 1 Wk-1 

-- \ htk-1 hk-1 C' Wk-1 i W~_ 1 ' (100) 
where hk-1 + r = h~:_ 1 and where we defined the G-  C t connecting factor 
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Table 10 
G-Cconnectingfactors((a'A b) G u') , providing connection between the MEs ofG~;~_= C~ E~ v C 
and C~k operators at level i = j  (>k) .  Since i must be doubly occupied in the bra and unoccupied 
in the ket, we can only have that A = (a - 1, b) and u' = u. Definition (71) is employed. 

u G--C 

(a,b - 1) {0/1} 
(a - 1, b + 1) {2/1} 

( /~¢ /~k ,~k /~k /~k A~-I G ) ct= ( Ak (0,1) (s) 
Ak-1 A~_I (0,0) l ) ( E )~k-1 ) (101) 

The relevant values of this factor are listed in table 11. 
(c) The next possibility arises when k = r = max{i,j, k}, i.e. when i,j <k = r. In 

this case we reduce the ME of Cj ~ using eq. (25") with n = k to the ME of Cjet in the 
U ( k -  1) basis times an appropriate isoscalar factor, while the generator matrix 
element is expressed as a product of a corresponding RME and ME of C-~i + in the 
U(i - 1) basis using eq. (30). Eliminating then the sum over intermediate states we 
get 

(A~ G,~,k Ak)__~( Ak (0,1) 1 A~ ) (s ) (  Ak E Ak ) 
W~ Wk /~k-1 + ~- (0, 1) A~_ 1 ,~k-1 -J- r ~k-l 

X ( "~c-lw[c_l Cj pt6fft[ Wk-1/~k-1 ) , (102) 

where p = A~,_ 1 - Ak-1 -- r. It is now straightforward to express the pairing opera- 

Table 11 
G-C  t connecting factors ((a'Ab)G d ) u ct' providing 

G~;/k -- C~k E/k and ~ operators at levelj = k (>i) .  

connection between the MEs of 

# A u G-C: 

(a,b- 1) ( a -  1,b) ( a -  1 , b -  1) 1 
(a, b - 1) (a, b - 2) 1 
(a,b- 1) ( a -  1,b) 1 
( a -  1 ,b+  1) (a,b + 2) 0 
( a -  1,b + 1) ( a -  l~b) 0 

( a -  1 , b + l )  ( a -  1,b) ( a -  2,b + 1) 1 
(a,b- 1) ( a -  1,b) 0 
(a,b- 1) ( a -  2,b + 2) 0 
( a -  1 ,b+  1) ( a -  1,b) 1 
( a -  1 ,b+ 1) ( a -  2 , b + 2 )  1 



x. Li, J. Paldus / Unitary group tensor algebras. H 309 

tor Cj pt C[ t MEs in terms of those for symmetric and antisymmetric tensors by 
employing eqs. (47)-(51). Introducing again appropriate G-S and G-A connecting 
factors, we obtain 

(A~  I Ak / ( A ~  Ia Ak / (Ak-1 (1,0)] A~_ 1 / (s) 
W E G~a"ik Wk = )~tk_ 1 ~k-1 S Wk-1 I/j] W,~_ 1 

+ (  A~ [G Ak ) (Ak_l  (0,2) I A~_ 1 )(s) 
 i,-1 A wk_1 [ij] . (103) 

All possible G-S and G-A connecting factors are given in table 12. To illustrate 
their evaluation, we consider the following example. 

Consider the case that level k is unoccupied in W E but is singly occupied in the 
second column of Wk. Thus, setting A~ = (a, b), we have that Ak = (a, b - 1) and 
A~_ 1 = (a,b),Ak_l = (a-- 1,b). Now, for ~-= 1 _ (0,1), we have p =  (a,b) 
- - ( a - - l , b ) - - ' r = ( 1 , O ) - - T = ( a , - - 1 ) = _ 2  and for T = 2 _ = ( 1 , - 1 ) ,  p = ( 1 , 0 )  
- ( 1 , - 1 )  = (0, 1) = 1. However, both the isoscalar factor and the RME on the 
right-hand side of eq. (102) vanish when r = 1, so that we get 

(a,b) [ / a , ~ - l ~  / ( (a 'b ) ]  C l t C 2 t ( a - l ' b )  ) 
(a,b) @~ik (a--1,b)  = . (104) 
w _l wk-1 wL1 wk_i 

Thus, applying eqs. (50) and (51) we find for the desired connecting factors the fol- 
lowing values 

( (a ,b ) [  ( a , b -  1 ) )  
(a,b) G ( a -  1,b) s = ½(1 + t~/J)l/2 b + l ' b  (105a) 

Table 12 
G-SandG--AconnectJngfactors((a'Ab) G t / )  , providing connection between the MEs of 

12 S,A 

G~u, = jC~. E~ and MEs of symmetric and antisymmetric tensors of /j] at level k > i, ' We ; 1"" [ ( J)" define 
s 0, = (1 + 60. )/~/2 and use notation of eq. (71). Unnecessary (1 - 6b,0) factors are avoided 
u s A u G-S G--A 

(a, b - 1) (a, b) (a, b - 2) 0 ao/v~ 
(a,b) (a- 1,b) &j{0/1} aij{2/1}/2 
(a,b - l) (a-  1,b - 1) -sij -ao. { - 1/1}/2 
(a-  1,b+ 1) (a-  1,b- 1) 0 aii{E/1}/x/2 

(a-  1,b+ 1) (a,b) (a-  2,b+ 2) 0 aij/v/2 
(a,b) (a- 1,b) s,y{2/1} -aij{O/1)/2 
(a - 1, b + 1) (a - 2, b + 1) -sij aij{3/1}/2 
(a,b - 1) (a - 2, b + 1) 0 aij{O/1}/x/~ 



310 X. Li, 3". Paldus / Unitary group tensor algebras. H 

( (a,b) G (a,b-1) )A=½aij( 1 ~ / ~ + 2  (105b) 
(a, b) (a - 1, b) - 6b,0) ÷ 1' 

with aij defined by eq. (48). The remaining possibilities are treated in a similar man- 
ner and the results are collected in table 12. 

(d) The last possibility occurs when i = r = max{i,j, k}, i.e. when j,  k <  i = r, 
which leads to G-E and G-N connecting factors. Similarly as in the preceding case 
(c) we find that 

( A '  i A ; ) _ _ _ ~ (  A~ (0,1) A'~ ) (s) (  Ai E A,. ) 

( "~'-Iw:_I ~i-1 ) 
W,_l ' 

× Cf t : (106) 

where p = Ai_ 1 - -  /V i- 1 -[- 7". Expressing the MEs of Cfj t C~ in terms of MEs of genera- 
tors Ejk and adjoint tensors ~r(~) eqs. (73), and introducing the corresponding ~'jk , 
G-E and G-N connecting factors, we can write 

Wl Wi /~i-1 /~i-1 E W;-1 Wi-1 

+ (  A' i G Ai ) ( A ' i _  1 N)~) Ai-1 ) (107) 
 'e-1 , i-1 N W,'I W/-1 ' 

where ~ is implied by the irrep labels Zi_ 1 and Ai-x. All possible connecting factors 
of the G-E and G-N types, together with the corresponding superscripts ~, are 
listed in table 13. 

As an example of evaluating these connecting factors, consider the case charac- 

Table 13 
G--E and G-N connecting factors A G u , providing connection between the MEs of 

G~;ik'-- ~ E ~  and MEs of E:k and N)~ ) at level/ g,N , (>j, k). Definition (71) is employed. 

# A u G-E G-N 

(a ,b-  1) (a ,b-  1) (a ,b-  1) -1 /2  -{ - 1/1}/x/2 0 
( a -  1,b+ 1) (a ,b-  1) 0 {0/1} + 
( a - l , b )  ( a ,b -2 )  0 -{ - 1/1} + 
( a -  1,b) ( a -  1,b) -{0/1}/2 -{2/1}/x/2 0 

( a -  1 ,b+ 1) (a ,b-  1) ( a -  1 ,b+ l )  0 {0/1} - 
( a -  1 , b + l )  ( a -  1 , b + l )  -1 /2  {3/1}/x/~ 0 
( a -  1,b) ( a -  1,b) -{2/1}/2 {O/1}/x/2 0 
( a -  1,b) ( a - 2 , b + 2 )  0 -1 - 
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terized by the irreps A~i = (a,b) and Ai = Ai-1 = A'i_ 1 = (a,b-1). In this case 
p = 7- and we obtain from eq. (106) that 

(a,b) G~;ik (a,b-1)\  
(a,b-1) ~ (a,b-1)) 
w:_1 / I 

-- ( (a' b - 1) r ~ l ' : l -  Z-'-'/'-T~I tC ~ (a,b-Wi_l 1) ) -- W[_I ~j "-'k if-U-l- x-- 
1 _ 2 ( (a ,b-  1)~g[_l EJ k (a,b- 1)[/gi_l / 

~.2 b - 1  I(a'b-1) N)°) (a'b-1)) 
- (-b-;  ] )  W[_ 1 W,--1 ' (108) 

yielding the first row of table 13. 
This completes the evaluation of required connecting factors or segment values 

in terms of which MEs of any two-body operator may be expressed, similarly as 
first derived by Paldus and Boyle [37] (cf. also ref. [36] for segmentation formulas 
based on the SN formalism). The required MEs are thus expressed in the following 
"segmented" form 

Al eikjl Al (eikjl)~ I W ;  Wl)  

?FII ff ~'~ 1 m 2 /7q2 E ~"~2 m 3  ff ~'~3 

where WZm(Z = P, X, Y, Q) designates an appropriate ruth level segment value of 
type Z that depends solely on the bra and the ket irrep labels of U(m) and U(m - 1 ) 
subgroups. Depending on the type, the segment values are given by various con- 
necting and scaled isoscalar factors. The index set f~2 designates the overlap region 
of the corresponding generator ranges [i, k] N [j,/], where the symmetric and anti- 
symmetric tensor (X = S, Y = A) or adjoint tensors (X = E, Y = N) come into 
play. The sets f~l and f~3 correspond then to single generator regions, where the fac- 
tors pertinent to the evaluation of one-body MEs (section 4) apply. We now indi- 
cate the specific form of the generic expression (109) for all relevant cases listed in 
table 8. 

(1) As already stated, the first case when f~2 = 0 reduces to the product of one- 
body MEs that were handled in section 4. 

(2) In case 2, again only a single product of segment values emerges. Thus, 
when k < i = j </ ,  we get from eqs. (84), (97) and (98) that 
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(A t  e A t ) f i ( A m  
(eik;it)= A~_I At-1 a m=i+l Am-1 

( A ,  G A i ) (  A,_ 1 × t Ai--I Ai-1 C W;-1 

(0,1) A' m )(~) 

(0,1) A~m_l 

(0,1) 1Ai-1 } (s) 
k Wi-1 ' 

or,when i < j  = k < l (using eq. (100) instead of eq. (98)) 

( e ) l - 1 (  Am At AI H A,,,-1 
(eik;kl) = A~_I Al-1 G m=k+l 

( A t k G A k )  ( Ak-1 
X Ark_ 1 Ak-1 Cl Wk-1 

(0,1) Arm )(s) 

(0, 1) Atm_l 

(0,1) A~_ 1 )(s) 
i W/~_ 1 ' 

(110) 

(111) 

where the last CG factor represents a simple product of isoscalar factors (cf., e.g., 
eq. (24)). 

(3) In case 3 of table 8, i.e. when i<~j<k = l, the MEs (eitjt) are given by eq. 
(87). The required symmetric tensor CG coefficients are evaluated using eq. (52) as 
a simple product of relevant isoscalar factors (tables 1 and 3). Note that the irrep 
(1, 0) remains unchanged from the (l - 1)st level to the level r = max{i,j}, when it 
changes to a single box irrep (0, 1) if i ¢ j or to the trivial scalar irrep (0, 0) if i = j. 
In the former case, the vector operator isoscalar factors are involved following 
the rth level. 

(4) In case 4 of table 8, when i , j<k<l ,  we encounter both symmetric and anti- 
symmetric tensors in the overlap region (from the kth level to the level max{i,j}). In 
view of eqs. (84), (97) and (109) we have 

) 
( e ~ j t ) =  A}_I At-1 Gm=k+l\Am-1 (0,1) Atm_l 

{ /  Ark G Ak I (Ak-1 (1'0) 1Ak-1 / (s) 
x \A'k_l Ak-x s Wk-i [ij] 

I At Ak I I Ak-I (0,2)A~_I /(s) 1 + (112) 
ALl Ak-1 A Wk-  [/j] wL1 

When i <j ,  both CG coefficients in curly bracket involve the same factor 

( Aj-1 (0' 1) A'~-I ) (s) [ 
(113) 

Wj-1 i . Wjt ._ l  ' 

corresponding to the non-overlap portion of the Eik generator range, that can be 
taken outside the curly bracket and represents in fact the wQ part in eq. (109). 

(5) In case 5 of table 8, i.e. whenj<~k<i = l, the MEs (etkjt) are given by eq. 
(92) in terms of the MEs of Ejk and N)ff ) operators that were examined in detail in 
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sections 4 and 6. In this case, the W e part in eq. (109) equals 1. Following the level 
max{j, k}, the MEs of Eyk and N~ ) may contain the following common factor 

(Ak-1 (0 ,1 ) ]A~_I )  (s), ( j<k)  (ll4) 
Wk-1 j W~_ 1 

representing the W Q part in eq. (109). Likewise, when k < j  (which corresponds in 
fact to the case c6 ofref. [37]), this factor becomes 

Wj_ 1 k Wj-1 " (115) 

(6) For the last case 6 of table 8, when j, k < i < l, the overlap region involves 
adjoint tensor operators Ejk and N(~ ) (from the ith level to the level max{j, k}). In 
view ofeqs. (84), (97) and (107) we get 

( e ) l - 1  ( Am (0' l)  l Arm ~(s) 
At At I I  Am-I (0,1) Arm_l,] (eikm) = ")'~-1 ;tt-1 e m=i+l 

/Vi--1 )ki--1 E W:-I W/-1 

-I-( )~' G "~i ) ( A~-I N~k ) /~i-1 ) )  (116) 
/Vi- i /~i-i N V~/t"- 1 W/-1 ' 

with ~ fixed by the irreps A~ 1 and Ai-i (see also table 13). Again, following the level 
max{/', k}, the MEs ofEjk an-d Nj)~ may possess a common factor (114) or (115) con- 
stituting to W Q of the generic formula, eq. (109). 

8. Conc lus ions  

We have shown in this paper that within the orbital (or spin-free) U(n) formal- 
ism one can introduce vector operators ~ and corresponding conjugate (or con- 
tragredient) vector operators C 7 that have similar properties as the creation and 
annihilation operators of the second quantization formalism at the spin orbital 
U(2n) level. Roughly speaking, the operators CTt (C7) create (annihilate) a single 
box, labelled with j, in the ath column of the Weyl tableau when acting on any U(n) 
irrep state labelled by this tableau. They may thus be regarded as spin-free orbital 
equivalents of the second quantization creation and annihilation spin orbital 
operators Xj~ and Xj#, respectively. 

We have further shown that products of these operators yield various tensor 
operators that play a very useful role in calculating MEs of various one- and two- 
body operators in the GT basis. Thus, products of two creation-like and two annihi- 
lation-like operators form symmetric and antisymmetric tensors associated with 
the irreps (1, 0) and (0, 2), respectively, while products of creation and an annihila- 
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tion operators, C ~ / ~  represent components ofa U(n) adjoint tensor. In fact, a sim- 
ple sum of diagonal (i.e. ~r = r) components represents U(n) generators Et/, that 
map any U(n) irrep module (a, b) into itself, while the off-diagonal ones (a ~ r) 
represent shift operators that take an (a, b) module into the ( a -  1, b + 2) and 
(a + 1, b - 2) modules, respectively (cf. eqs. (61a) and (61c)). The remaining possi- 
ble linear combination of diagonal-type operators, corresponding to the other 
zero-shift component of a general adjoint tensor (assuming b ~ 0), is not, however, 
a simple difference of the operators representing EO., eq. (56). It is shown that a sui- 
table choice for this zero-shift tensor operators results when the ratio of corre- 
sponding (irrep dependent) "coefficients" equals b/(b + 2). It is also shown that by 
appropriate scaling of all quantities by the corresponding RMEs we achieve a 
very simple, a-independent (i.e. only intermediate spin dependent given by the b- 
label) formalism, that also naturally leads to a convenient phase convention that 
corresponds to that chosen by Shavitt [4,11] (convention IIB of ref. [37]). All the 
segment values that are required for the evaluation of various one- and two-body 
MEs may then be easily expressed in terms of corresponding isoscalar factors (or 
reduced Wigner coefficients) and RMEs and their explicit form derived. With the 
scaling just mentioned, their form is extremely simple. 

The introduction of vector operators such as ~ and C 7 may, in principle, be 
avoided in developing the U(n) formalism for the evaluation of various MEs that 
arise in quantum chemical applications, as is the case in all existing approaches to 
this problem. This is also true when spin-dependent operators [41] or various 
reduced density matrices [47] are considered. However, these operators not only 
provide a very useful counterpart of the second quantization formalism at the spin- 
adapted (or orbital) level and enable one of the simplest derivations of explicit 
expressions for various segment values, but also throw new light on the existing 
formalisms. In particular, it will be interesting to establish a detailed relationship 
of the formalism developed in this series with a very general Green-Gould 
approach, as well as to investigate the possible connection with the Clifford algebra 
UGA [39] and U(n) universal enveloping algebra formalism [25] that proved to be 
very helpful for a spin-adapted formulation of various many-body approaches 
employing the effective Hamiltonian formalism (see, e.g., ref. [48]). It would thus 
be worthwhile to examine more closely the algebra of these vector operators in 
their own right and to establish its relationship with existing formalisms. 

In subsequent communications of this series, we shall thus show how to exploit 
this formalism when spin-dependent operators are present as well as when system 
partitioning is employed [46]. We shall also indicate [49] how this approach is 
related with the Green-Gould formalism, showing that ~ (C}') represent unique 
vector (contragredient vector) operators whose squared RMEs are equal to the 
characteristic roots of Green's polynomial identities [42], corresponding to a given 
U(n) irrep (a, b). Likewise, the close relationship between the zero-shift tensor 
N~ ) and the A/j operator [41], represented by a second degree polynomial in U(n) 
generators, will be shown [49]. This operator plays a fundamental role in the UGA 
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sp in-dependent  fo rmal i sm [41] as well as in the t heo ry  o f  reduced  dens i ty  mat r ices  
[47] and  is w o r t h y  o f  fu r the r  inqui ry  provid ing  new insight  into its s t ruc ture  a n d  
role. 
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